Abstract

The authors describe a composite consisting of silicon nanoparticles that were first coated with SiO2 and then with a molecularly imprinted polymer (SiNP@SiO2@MIP). The MIP was generated by dual epitope imprinting such that it can recognize cytochrome c (Cyt c). The MIP on the NPs was prepared from the functional monomer zinc(II) acrylate (ZnA), the crosslinker ethylene glycol dimethacrylate and the initiator 2,2'-azoisobutyronitrile. Dual epitope templates for Cyt c included (a) a C-terminal nonapeptide (AYLKKATNE), and (b) an N-terminal nonapeptide (GDVEKGKKI). The chelation between Zn(II) of ZnA and the amino groups or hydroxy groups of the template nonapeptides warrants good recognition and capture of Cyt c. The fluorescence originating from SiNPs has excitation/emission peaks at 360/480nm and is quenched by Cyt c in the 0.50-40.0μM concentration range. The correlation coefficient for the calibration plot of the imprinted NPs is 0.9937. The detection limit is 0.32 ± 0.01μM, the precisions of six replicate detections at levels of 0.5, 20 and 40μM Cyt c are 3.2, 2.7 and 2.8%, respectively, and the imprinting factor is 2.43. Compared to single epitope template imprinting, dual epitope imprinting results in improved selectivity. The imprinted nanoparticles can discriminate Cyt c even if one amino acid is mismatched. The method was applied to the determination of Cyt c in spiked diluted human serum and gave recoveries between 94.0 and 107.5%. Graphical Abstract A fluorescent material of the architecture silicon nanoparticle@SiO2@molecularly imprinted polymer (SiNP@SiO2@MIP) was fabricated by dual epitope imprinting and a metal-chelating method. The chelation between Zn(II) of the functional monomer zinc(II) acrylate and the amino groups or hydroxy groups of template warrants that the material recognizes and captures cytochrome c well, and this results in fluorescence quenching.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.