Abstract

Biochemical analysis in reliable, low-toxicity, and real-time manners are essentially important for exploring and unraveling biological events and related mechanisms. Silicon nanomaterial-based sensors and probes have potentiality to satisfy the above-mentioned requirements. Herein, we present an overview of the recent significant improvement in large-scale and facile synthesis of high-quality silicon nanomaterials and the research progress of biosensing and bioimaging analysis based on silicon nanomaterials. We especially illustrate the advanced applications of silicon nanomaterials in the field of ultrasensitive biomolecular detection and dynamic biological imaging analysis, with a focus on real-time and long-term detection. In the final section of this review, we discuss the major challenges and promising development in this domain.

Highlights

  • During the past decades, functional nanomaterials [e.g., fluorescent semiconductor quantum dots (QDs), graphene, carbon nanodots, gold/silver nanoparticles (Au/Ag NPs), etc.] have been intensively employed for the design of various biosensors and probes, owing to their excellent physicochemical properties (Jung et al, 2010; Holzinger et al, 2014; Tilmaciu and Morris, 2015)

  • Several economic and facile synthetic strategies have been developed for the preparation of strong fluorescent silicon nanoparticles (SiNPs) with controllable colors in facile and large-quantity manners

  • Current challenge remains that the exact photoluminescence mechanism of fluorescent silicon nanostructures is controversially to some extent, which requires thorough elucidation in the future

Read more

Summary

Silicon Nanomaterials for Biosensing and Bioimaging Analysis

Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China. Reviewed by: Ruoxue Yan, University of California, Riverside, United States Xiaoji Xie, Nanjing Tech University, China Yiqing Lu, Macquarie University, Australia. Biochemical analysis in reliable, low-toxicity, and real-time manners are essentially important for exploring and unraveling biological events and related mechanisms. Silicon nanomaterial-based sensors and probes have potentiality to satisfy the above-mentioned requirements. We present an overview of the recent significant improvement in large-scale and facile synthesis of high-quality silicon nanomaterials and the research progress of biosensing and bioimaging analysis based on silicon nanomaterials. We especially illustrate the advanced applications of silicon nanomaterials in the field of ultrasensitive biomolecular detection and dynamic biological imaging analysis, with a focus on real-time and long-term detection. In the final section of this review, we discuss the major challenges and promising development in this domain

INTRODUCTION
SYNTHESIS OF SILICON NANOMATERIALS
BIOLOGICAL IMAGING
CONCLUSION AND PERSPECTIVE
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.