Abstract

ABSTRACTPatterning on the 10 Å size scale has been achieved with a UHV-STM for Si(100)-2×1:H surfaces. Hydrogen passivation serves as a monolayer resist which the STM locally desorbs, exposing clean Si(100)-2×1 for selective chemistry. Two mechanisms have been identified for hydrogen removal by STM electrons: in the field emission regime direct electron stimulated desorption of hydrogen occurs whereas, in the lower energy tunneling regime, hydrogen desorption results from vibrational excitation of the Si-H bond at high tunneling currents. Furthermore, we find that atomic hydrogen is liberated in contrast to molecular hydrogen evolved during thermal desorption. Selective oxidation and nitridation of the STM-patterned areas has been achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.