Abstract

We fabricated a nanodot-array device with multiple input gates on a silicon-on-insulator (SOI) wafer by using a pattern-dependent oxidation method with multiple input gates, which embodies a new concept of a flexible single-electron device. Although the device can generate many logic functions owing to the capacitive coupling between dots and many gates, the complicated structural configuration makes it difficult to confirm the formation of the nanodot array. For further investigation of this kind of device to achieve higher functionality, it is important to demonstrate experimentally that the dot array is actually formed. We analyzed the oscillation-peak shift caused by the gate voltage change, and successfully determined the location of the dots that contributed to the experimentally observed oscillations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.