Abstract

Silicon nanocrystals (Si-NCs) are emerging as an attractive class of quantum dots owing to the natural abundance of silicon in the Earth's crust, their low toxicity compared to many Group II-VI and III-V based quantum dots, compatibility with the existing semiconductor industry infrastructure, and their unique optoelectronic properties. Despite these favorable qualities, Si-NCs have not received the same attention as Group II-VI and III-V quantum dots, because of their lower emission quantum yields, difficulties associated with synthesizing monodisperse particles, and oxidative instability. Recent advancements indicate the surface chemistry of Si-NCs plays a key role in determining many of their properties. This Review summarizes new reports related to engineering Si-NC surfaces, synthesis of Si-NC/polymer hybrids, and their applications in sensing, diodes, catalysis, and batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.