Abstract

We report fabrication of silicon nano-mechanical resonators where the key nanolithography step is performed by using tip-based nanofabrication (TBN). Specifically, a heated atomic force microscope tip deposited polystyrene nanowires that were used together with a lithographically patterned aluminum to serve as an etch mask for silicon resonators their anchors. Using this nanofabrication technique, we demonstrate the fabrication of different types of silicon nano-mechanical resonator devices, including those that are either singly or doubly clamped and having either straight or curvilinear features. Typical dimensions for the width and thickness of these devices is in the range of several hundred nanometers. We characterized the mechanical resonance properties of these devices by using laser Doppler vibrometry and compared the measured response with finite element simulations. Typical resonance frequency values ranged from 1 to 3 MHz and typical quality factor values ranged from 100 to 150. The combination of TBN along with conventional microfabrication processes could help to realize new types of nano-devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call