Abstract

Highly structured silicon microwire (Si MW) arrays have been synthesized and characterized as absorbers for solar energy-conversion systems. These materials are of great interest for applications in solar energy conversion, including solar electricity and solar fuels production, due to their unique materials properties, form factors, ease of fabrication, and device-processing attributes. The Si MW array geometry allows for efficient collection of photogenerated carriers from impure materials that have short minority-carrier diffusion lengths while simultaneously allowing for high optical absorption and high external quantum yields for charge-carrier collection. In addition, Si MW arrays exhibit unique mesoscale optical behavior and can be removed from the growth substrate to provide flexible, processable arrays of Si microwires ordered in a variety of organic polymers and ionomers. The unique photon-management properties of Si MW arrays, combined with their high internal surface area and controlled morphology for catalyst placement and support, allow for the use of earth-abundant electrocatalysts to produce an integrated, functional photoelectrode. These materials therefore also provide an opportunity to explore the 3-dimensional photoelectrochemical behavior of fuel-forming microstructured electrodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.