Abstract

Silicon (Si)-mediated growth promotion of various grasses is well documented. In the present study, Si-induced changes in maize shoot growth and its underlying mechanisms were studied. Maize plants were grown with various concentrations of Si (0–3 mM) in the nutrient solution. Silicon nutrition improved plant expansion growth. Silicon-supplied maize plants (0.8 and 1.2 mM) showed higher plant height and leaf area compared to no-Si amended plants. It was assumed that Si-induced expansion growth was due to positive Si effects on plasma membrane (PM) H+-ATPase. In this context, western blot analysis revealed an increase in PM H+-ATPase abundance by 77% under Si nutrition. However, in vitro measurements of enzyme activities showed no significant effect on apoplast pH, proton pumping, passive H+ efflux and enzyme kinetics such as Km, Vmax, and activation energy. Further, these results were confirmed by in vivo ratiometric analysis of apoplastic pH, which showed non-significant changes upon Si supply. In contrast, 1 mM Si altered the relative transcripts of specific PM H+-ATPase isoforms. Silicon application resulted in a significant decrease of MHA3, and this decrease in transcription seems to be compensated by an increased concentration of H+-ATPase protein. From these results, it can be concluded that changes in cell wall composition and PM H+-ATPase may be responsible for Si-mediated growth improvement in maize.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.