Abstract

We studied the formation of dissolved silicon loads from rivers to lakes, the development of diatoms in lakes and the role of climatic forcing on the silicon cycle in three river-lake systems in Sweden, Estonia and Northern Germany. We found coherent seasonality in the silicon loads of the two northern rivers, which was probably caused by the common snow-type hydrology of the catchments as distinct from the rain-type hydrology of the catchment, further south. The similarity among lakes in the dynamics of the Si-related variables studied resulted from similarities in mean lake depth and mixing type rather than the climatic regime. Among the variables measured at the three sites, river water discharge responded most coherently to climatic forcing as synchronized by the North Atlantic Oscillation winter index (NAOw). Water discharge and Si load were strongly linked variables and showed coherent patterns among the river systems. We found significant season-specific correlations of the NAOw with either the biomass or the share of diatoms in each lake, but no coherent pattern among the lakes. Our results indicate that processes driven by water discharge are more coherent across regions than in-lake processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.