Abstract
We determined the silicon isotopic compositions of silicates (olivine and low-Ca pyroxene) in type I and type II chondrules of the carbonaceous chondrites Allende, Kaba, NWA (Northwest Africa) 5958, and MIL (Miller Range) 07342. Type I chondrule silicates show large, mass-dependent Si isotopic fractionations, with δ30Si values ranging from −7‰ to +2.6‰, whereas the δ30Si values of type II chondrule silicates are close to zero and vary by less than 2‰. When present, Mg-rich relict olivine grains in type II chondrules show larger Si variations than their FeO-rich counterparts. In type I chondrules, low-Ca pyroxenes yield systematically lighter δ30Si values than Mg-rich olivines. Our results show that type I chondrules are complex objects whose Si isotopic compositions derived from their precursors and SiO-rich gas-melt interactions. This corroborates that type I chondrules are nebular products that formed under open-system conditions. Our data also suggest that at least some type II chondrules derived from their type I counterparts. Overall, this demonstrates that recycling was common during the evolution of the protoplanetary disk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.