Abstract

The stable silicon isotopic composition (δ30Si) of waters and diatoms has increasingly been used to investigate the biogeochemical cycling of Si in the major ocean basins. Here we present the first Si isotope data set from the northern South China Sea (NSCS), a large marginal sea system in the western North Pacific to examine sources and utilization of silicic acid (Si(OH)4). During two cruises in July–August 2009 (summer) and January 2010 (winter), samples for isotope measurements of dissolved Si(OH)4 (δ30SiSi(OH)4) and of biogenic silica (δ30SiBSi) in suspended particles were collected along a transect perpendicular to the coast from the inner shelf to the deep-water slope, as well as at the South East Asian Time-series Study (SEATS) station located in the NSCS basin. Surface δ30SiSi(OH)4 generally increased from values ∼+2.3‰ on the inner shelf to ∼+2.8‰ above the deep basin, suggesting an increasing utilization of dissolved Si(OH)4 reflecting the transition from eutrophic to oligotrophic conditions. The δ30SiBSi values were systematically lower than the corresponding δ30SiSi(OH)4 in the euphotic zone (above 100m) on the shelf and slope. In contrast at station SEATS in the NSCS basin, δ30SiBSi signatures in both seasons were within error equal to δ30SiSi(OH)4 in the surface mixed layer (above 50m) and δ30SiBSi in waters below were significantly higher than the corresponding δ30SiSi(OH)4. By comparing the field data with the Si isotope fractionation revealed by the Rayleigh or the steady state models, we demonstrate the existence of variable Si(OH)4 origins in different areas of the NSCS. Surface waters on the inner shelf were largely fed by nutrients from the Pearl River input. While the primary source of Si(OH)4 for the euphotic zone on the outer shelf and slope was upwelling or vertical mixing from underlying waters, the Si(OH)4 in the surface mixed layer of the NSCS basin might have originated from horizontal mixing with other highly fractionated surface waters. As a consequence, the Si isotope dynamics in the NSCS are largely controlled by variable biological fractionation of Si in waters from different sources with different initial Si isotopic compositions rather than any single source water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.