Abstract

In recent years, benefits of silicon in plants grown under stress conditions have been reported. The objective of the research was to evaluate the response at a physiological and biochemical level of millet (Panicum miliaceum L.) to fertilization with Si under controlled stress conditions during vegetative stage, drought, salinity and the control (without stress). After stress, shoot and root length, DM content, peroxidase (POD) and catalase (CAT) activity, proline, H2O2 and Si content, seed yield and germination percentage were measured. Drought and salinity significantly decreased shoot (24%, 21%) and root (30% in drought) development, weight (36%, 29%) and seed number (30%, 21%) per plant. Application of Si significantly increased seed number (289) and seed weight (1.20 g) in the control plants, increased seed weight (0.83 g) in plants under drought and germination percentage (99%) in plants under salinity. Silicon increased 2.1 times POD activity in drought, 1.4 times in salinity and control plants; CAT activity increased 10.6 times in salinity and 1.7 times in control plants. Silicon decreased 10 times proline levels in plants under drought; in salinity and control, proline content increased 1.3 times with Si and H2O2 levels decreased in these treatments. The Si content in plants fertilized with Si under drought, salinity and control was 6%, 3.54% and 5.45% respectively. In conclusion, Si can improve plant stress tolerance by stimulating POD and CAT activity, and regulating proline levels, allowing it to improve the production and physiological seed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.