Abstract

Silicon heterojunction (SHJ) solar cells have reached high power conversion efficiency owing to their effective passivating contact structures. Improvements in the optoelectronic properties of these contacts can enable higher device efficiency, thus further consolidating the commercial potential of SHJ technology. Here we increase the efficiency of back junction SHJ solar cells with improved back contacts consisting of p-type doped nanocrystalline silicon and a transparent conductive oxide with a low sheet resistance. The electrical properties of the hole-selective contact are analysed and compared with a p-type doped amorphous silicon contact. We demonstrate improvement in the charge carrier transport and a low contact resistivity (<5 mΩ cm2). Eventually, we report a series of certified power conversion efficiencies of up to 26.81% and fill factors up to 86.59% on industry-grade silicon wafers (274 cm2, M6 size).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.