Abstract

An increase in power densities in electronic devices is a direct consequence of their miniaturization and performance improvements. We propose the use of flat miniature heat pipes with micro capillary grooves to spread heat flux across a heat sink. Models of the structure were developed to calculate heat transfer limitations and temperature drops. A brass/water prototype was fabricated to demonstrate the feasibility of heat spreading using this type of heat pipe. Simulation and experimental results obtained with the prototype are described. The dissipated power reached 110 W/cm/sup 2/ without heat transfer limitations. The results are then extended to the design of this type of heat pipe in silicon. Thermal performance was calculated. Simulation, experimental results and the fabrication process are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.