Abstract
We fabricated a frequency-modulated continuous-wave light detection and ranging (FMCW LiDAR) chip that integrates a slow-light grating (SLG) beam scanner and an optical interferometer for k-clock generation using silicon photonics. Beam scanning and FMCW light generation were performed simultaneously through a wavelength sweep, while the sweep nonlinearity was compensated by resampling the ranging signal using the k-clock. The interferometer incorporated a 24-cm-long Si waveguide delay line, facilitating ranging up to 7.1 m and the capture of point cloud images. The possibility of ranging longer distances by lengthening the waveguide and increasing the interpolation is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.