Abstract

Grasses have been considered to primarily employ tolerance in lieu of defense in mitigating damage caused by herbivory. Yet a number of mechanisms have been identified in grasses, which may deter feeding by grazers. These include enhanced silicon uptake, hosting of toxin-producing endophytic fungi and induction of secondary metabolites. While these mechanisms have been individually studied, their synergistic responses to grazing, as well as their effects on grazers, are poorly known. A field experiment was carried out in 5 × 5 m outdoor enclosures to quantify phytochemical changes of either endophyte-infected (E+) or endophyte-free (E-) meadow fescue (Schedonorus pratensis) in response to medium intensity (corresponding with densities of ca. 1200 voles/ha for 5 weeks during 3 months) or heavy intensity (ca. 1200 voles/ha for 8 weeks during 3 months) grazing by a mammalian herbivore, the field vole (Microtus agrestis). A laboratory experiment was then conducted to evaluate the effects of endophyte infection status and grazing history of the grass diet on vole performance. As predicted, grazing increased foliar silicon content, by up to 13%. Grazing also increased foliar levels of phosphorous and several phenolic compounds, most notably those of the flavonols isorhamnetin-diglycoside and rhamnetin derivative. Silicon concentrations were consistently circa 16% higher in E+ grasses than in E-grasses, at all levels of grazing. Similarly, concentrations of chlorogenic acid derivative were found to be consistently higher in E+ than in E- grasses. Female voles maintained on heavily grazed grasses suffered higher mortality rates in the laboratory than female voles fed ungrazed grass, regardless of endophyte infection status. Our results conclusively demonstrate that, in addition to tolerance, grasses employ multi-tiered, effective defenses against mammalian grazers.

Highlights

  • Grasses are highly tolerant to grazing by means of their rapid regrowth capacity, basal meristems, underground storage organs and tillering capacity (Dyer et al, 1991; Karban and Baldwin, 2007)

  • The aim of this study was to simultaneously quantify how levels of Si, other nutrients and secondary metabolite content interact in grasses in response to mammalian grazing and endophyte infection status

  • Grazing and endophyte infection status did interact in altering the phenolic compound profile of grasses

Read more

Summary

Introduction

Grasses are highly tolerant to grazing by means of their rapid regrowth capacity, basal meristems, underground storage organs and tillering capacity (Dyer et al, 1991; Karban and Baldwin, 2007). Grasses have been considered to primarily rely on these tolerance traits in lieu of physical or chemical defenses to mitigate damage caused by herbivory. Si is drawn from the soil and deposited systemically in the cell walls or lumina of new shoots as silica bodies or phytoliths (Ma and Yamaji, 2006; Currie and Perry, 2007). These forms of Si are extremely hard, and thereby increase the abrasiveness of leaf material (Massey and Hartley, 2006), potentially leading to accelerated tooth wear in grazers

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call