Abstract

In the course of past two decade anthropogenic activities have reinforced, begetting soil and water defilement. A plethora of heavy metals alters and limits plant growth and yield, with opposing effect on agricultural productivity. Silicon often perceived as plant alimentary 'nonentity'. A suite of determinants associated with silicon have been lately discerned, concerning plant physiology, chemistry, gene regulation/expression and interaction with different organisms. Exogenous supplementation of silicon renders resistance against heavy-metal stress. Predominantly, plants having significant amount of silicon in root and shoot thus are barely prone to pest onset and manifest greater endurance against abiotic stresses including heavy-metal toxicity. Silicon-mediated stress management involves abatement of metal ions within soil, co-precipitation of metal ions, gene modulation associated with metal transport, chelation, activation of antioxidants (enzymatic and non-enzymatic), metal ion compartmentation and structural metamorphosis in plants. Silicon supplementation also stimulates expression of stress-resistant genes under heavy-metal toxicity to provide plant tolerance under stress conditions. Ergo, to boost metal tolerance within crops, immanent genetic potential for silicon assimilation should be enhanced. Current study, addresses the potential role and mechanistic interpretation of silicon induced mitigation of heavy-metal stress in plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.