Abstract
New cylindrical silicon drift detectors have been designed, fabricated and tested. They comprise an integrated on-chip amplifier system with continuous reset, on-chip voltage divider, electron accumulation layer stabilizer, large area, homogeneous radiation entrance window and a drain for surface generated leakage current. The test of the 3.5 mm 2 large individual devices, which have also been grouped together to form a sensitive area up to 21 mm 2 have shown the following spectroscopic results: at room temperature (300 K) the devices have shown a full width at half maximum at the Mn Kα line of a radioactive 55 Fe source of 225 eV with shaping times of 250 to 500 ns. At −20°C the resolution improves to 152 eV at 2 μs Gaussian shaping. At temperatures below 200 K the energy resolution is below 140 eV. With the implementation of a digital filtering system the resolution approaches 130 eV. The system was operated with count rates up to 800 000 counts per second and per readout node, still conserving the spectroscopic qualities of the detector system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.