Abstract

A new reference spring for the simultaneous calibration of probing force and displacement has been developed. The spring consists of two single silicon springs, which are placed at a distance of 3 μm from each other. Each single spring consists of a moveable shaft, which is suspended and guided by four double-folded silicon springs. This leads to a much higher stiffness of the spring perpendicular to the direction of movement than in the direction of movement. The area of contact of the double spring has a size of 50 μm × 60 μm. However, measurable changes in the calibration parameters could not be observed when we varied the location of the loading point within this area. Furthermore, it could be shown for measurements at different temperatures that the calibration parameters also show a very small dependence on temperature (<0.4%/K between 22 °C and 23 °C). A further outstanding property of this new reference spring is its small non-linearity of the force deflection curve of 0.1%. The spring can be used for the calibration of force and the displacement of atomic force microscopes, nanoindenters, and stylus instruments in the micro-Newton range up to 12 μN and up to 3 μm displacements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call