Abstract
A new inductively coupled plasma-chemical vapor deposition (ICP-CVD) SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> passivation for high voltage switching AlGaN/GaN high electron mobility transistors (HEMTs) is proposed to increase the breakdown voltage and the forward drain current. AlGaN/GaN HEMTs are fabricated and measured before and after SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> passivation. The measured off-state breakdown voltage of SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> passivated device is 455 V, whereas that of the unpassivated device is 238 V. The surface leakage current of AlGaN/GaN HEMTs are decreased due to SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> passivation. The forward drain currents of SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2 </sub> passivated devices are increased by 20 %~35 % because two-dimensional electron gas (2DEG) charge is increased and the electron injections to the surface traps are decreased. SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> passivation is more suitable for high voltage switching AlGaN/GaN HEMTs than Si <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> N <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> passivation due to a high breakdown voltage and a low leakage current
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.