Abstract

Using nanofluids in direct absorption solar collectors (DASC) is a potential means of improving photothermal conversion efficiency. Nanocarbon materials, such as carbon black, graphene, and carbon nanotubes, are generally used to prepare nanofluids for DASC. However, carbon black is difficult to disperse, and graphene and carbon nanotubes areexpensivetoproduce. In this study, we reported a new silicon dioxide@carbon (SiO2@C) nanocomposite prepared by chemical vapor deposition (CVD), forming a core–shell nanoparticle. The carbon source was a melt-blown filter obtained from face masks. The SiO2@C nanocomposites have a broadband absorption range of 200–2500 nm. The water-based SiO2@C nanofluids were prepared using carbonylated cellulose nanofibers (CNF-C) as the dispersant. The nanofluids demonstrated excellent dispersion stability, heat transfer, and optical properties. The viscosity of SiO2@C nanofluids decreased with increasing SiO2@C mass fraction, which differs from previous research findings. The maximum photothermal conversion efficiency of the SiO2@C nanofluid reached 91.4%. In one hour, the enhancement of photothermal conversion efficiency of the SiO2@C nanofluid relative to deionized water was 101.4%, proving that the SiO2@C nanofluid shows great applicability to DASC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.