Abstract

Silicon carbide solid foams decorated with a dense, homogeneous and mechanically strength layer of carbon nanofibers were successfully employed as catalyst support for the palladium active phase in the liquid-phase hydrogenation of CC bond. The carbon nanofibers provide a high density of anchorage sites for improving the dispersion of the metal nanoparticles compared to the pure SiC support where low metal–support interaction leads to the formation of larger palladium particles. The catalyst was directly used as a rotating foam catalytic stirrer and has shown a better catalytic performance in the liquid-phase selective hydrogenation compared to that obtained on a palladium deposited on a pristine SiC support. The macroscopic shaping of the catalyst also allows an easy product/catalyst separation after the reaction. The catalyst also displays an extremely high stability as a function of cycling tests as no hydrogenation activity lost was observed after ten cycling tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.