Abstract

Silicon carbide fibre reinforced glass-ceramic matrix composites have been investigated as a structural material for use in oxidizing environments to temperatures of 1000° C or greater. In particular, the composite system consisting of SiC yarn reinforced lithium aluminosilicate (LAS) glass-ceramic, containing ZrO2 as the nucleation catalyst, has been found to be reproducibly fabricated into composites that exhibit exceptional mechanical and thermal properties to temperatures of approximately 1000° C. Bend strengths of over 700 MPa and fracture toughness values of greater than 17 MN m−3/2 from room temperature to 1000° C have been achieved for unidirectionally reinforced composites of ∼ 50 vol% SiC fibre loading. High temperature creep rates of 10−5 h−1 at a temperature of 1000° C and stress of 350 MPa have been measured. The exceptional toughness of this ceramic composite material is evident in its impact strength, which, as measured by the notched Charpy method, has been found to be over 50 times greater than hot-pressed Si3N4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call