Abstract
Silicon carbide fiber-mediated delivery of DNA into intact plant cells was investigated. Black Mexican Sweet (BMS) maize (Zea mays) and tobacco (Nicotiana tabacum) suspension culture cells were vortexed in the presence of liquid medium, plasmid DNA encoding β-glucuronidase (GUS), and silicon carbide fibers. Penetration of BMS cells by the silicon carbide fibers was observed by scanning electron microscopy of vortexed cells. Following fiber and DNA treatment, BMS cells transiently expressed GUS activity at a mean frequency of 139.5 units (one unit = one blue cell or one colony of blue cells) per sample. Treated tobacco cells expressed an average of 373 GUS units per sample. Untreated controls did not exhibit GUS activity. These results indicate that the silicon carbide fibers-vortex procedure can be used to rapidly and inexpensively deliver foreign DNA into intact plant cells for investigations of transient gene expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.