Abstract
Silicon carbide (SiC) flexural-mode resonators have been fabricated and actuated. Single-clamped beam (cantilever) and circular (ring) structures have been fabricated with top electrodes made of aluminium (Al). Ring structures have been shown to achieve higher resonant frequencies, in the megahertz range, compared to cantilevers. The bimorph Al/SiC structures have been actuated electrothermally by applying one input voltage to the Al electrodes. Electrothermal mixing of two input frequencies has been performed by applying two voltages showing that the devices can be used to convert an input frequency to a higher or lower one. Moreover, lead zirconium titanate (PZT) electrodes have been fabricated on top of SiC cantilevers. The ability of driving the PZT/SiC cantilevers piezoelectrically has been demonstrated by applying an input voltage to the PZT electrodes. The devices’ resonance has been detected electrically by measuring the electrode impedance. An enhancement of the electrical output has been obtained by decreasing the feedthrough capacitance. The results presented can be used for the implementation of SiC micro electromechanical mixer-filters with electrothermal actuation and piezoelectric sensing with robust and reliable characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.