Abstract
Semiconductor detectors for in vivo dosimetry have served in recent years as an important part of quality assurance for radiotherapy. Silicon carbide (SiC) can represent a better semiconductor with respect to the more popular silicon (Si) thanks to its physical characteristics such as wide bandgap, high electron saturation velocity, lower effective atomic number, and high radiation resistance to X and gamma rays. In this article we present an investigation aimed at characterizing 4H-SiC epitaxial Schottky diodes as in vivo dosimeters. The electrical characterization at room temperature showed ultra low leakage current densities as low as 0.1 pA/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> at 100 V bias with negligible dependence on temperature. The SiC diode was tested as radiotherapy dosimeter using 6 MV photon beams from a linear accelerator in a typical clinical setting. Collected charge as a function of exposed radiation dose were measured and compared to three standard commercially available silicon dosimeters. A sensitivity of 23 nC/Gy with linearity errors within ±0.5% and time stability of 0.6% were achieved. No negligible effects on the diode I-V characteristics after irradiation were observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.