Abstract

AbstractSilicon nanoparticles (Si NPs) have been considered as promising anode materials for next‐generation lithium‐ion batteries, but the practical issues such as mechanical structure instability and low volumetric energy density limit their development. At present, the functional energy‐storing architectures based on Si NPs building blocks have been proposed to solve the adverse effects of nanostructures, but designing ideal functional architectures with excellent electrochemical performance is still a significant challenge. This study shows that the effective stress evolution management is applied for self‐assembled functional architectures via cross‐scale simulation and the simulated stress evolution can be a guide to design a scalable self‐assembled hierarchical Si@TiO2@C (SA‐SiTC) based on core–shell Si@TiO2 nanoscale building blocks. It is found that the carbon filler and TiO2 layer can effectively reduce the risk of cracking during (de)lithiation, ensuring the stability of the mechanical structure of SA‐SiTC. The SA‐SiTC electrode shows long cycling stability (842.6 mAh g−1 after 1000 cycles at 2 A g−1), high volumetric capacity (174 mAh cm−3), high initial Coulombic efficiency (80.9%), and stable solid‐electrolyte interphase (SEI) layer. This work provides insight into the development of the structural stable Si‐based anodes with long cycle life and high volumetric energy density for practical energy applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call