Abstract

We report on a silicon-based resonant cavity photodiode with a buried silicon dioxide layer as the bottom reflector. The buried oxide is created by using a separation by implantation of oxygen technique. The device shows large Fabry–Pérot oscillations. Resonant peaks and antiresonant troughs are observed as a function of the wavelength, with a peak responsivity of about 50 mA/W at 650 and 709 nm. The leakage current density is 85 pA/mm2 at −5 V, and the average zero-bias capacitance is 12 pF/mm2. We also demonstrate that the buried oxide prevents carriers generated deep within the substrate from reaching the top contacts, thus removing any slow carrier diffusion tail from the impulse response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.