Abstract
Both the diversity and complexity of microfluidic systems have experienced a tremendous progress over the last decades, enabled by new materials, novel device concepts and innovative fabrication routes. In particular the subfield of high-throughput screening, used for biochemical, genetic and pharmacological samples, has extensively emerged from developments in droplet microfluidics. More recently, new 3D device architectures enabled either by stacking layers of PDMS or by direct 3D-printing have gained enormous attention for applications in chemical synthesis or biomedical assays. While the first microfluidic devices were based on silicon and glass structures, those materials have not yet been significantly expanded towards 3D despite their high chemical compatibility, mechanical strength or mass-production potential. In our work, we present a generic fabrication route based on the implementation of vertical vias and a redistribution layer to create glass-silicon-glass 3D microfluidic structures. It is used to build different droplet-generating devices with several flow-focusing junctions in parallel, all fed from a single source. We study the effect of having several of these junctions in parallel by varying the flow conditions of both the continuous and the dispersed phases. We demonstrate that the generic concept enables an upscaling in the production rate by increasing the number of droplet generators per device without sacrificing the monodispersity of the droplets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.