Abstract
AbstractIn this study, scalable membrane technologies are adapted to obtain silicon asymmetric membranes for lithium‐ion battery anodes. The unique asymmetric porous structure can provide both mechanical support and free volume to accommodate the large volume expansion during silicon lithiation, thus leading to excellent rate and cycling performance. An overall specific capacity as high as 1500 mAh g−1 was achieved at 100 mA g−1. Even at 1000 mA g−1, the capacity was still above 800 mAh g−1. More than 90 % of the initial capacity was retained after 200 cycles. It was also observed that a lower Si content and higher carbonization temperature can help achieve stable cycling performance in general. This report is significant in terms of demonstrating a simplistic, generic, and scalable method to create a robust, porous asymmetric membrane structure for efficient lithium‐ion storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.