Abstract

Under salt stress, plants suffer from potassium (K) deficiency caused by excess salts in growth substrate. Silicon (Si) can promote K status in many plant species under salt stress, however, the underlying mechanisms remain unclear. In this study, we assessed the effects of Si on K homeostasis in rice under salt stress and investigated the mechanisms behind using two low-Si rice mutants (lsi1 and lsi2) and their wild types (WTs). After five days’ treatment with Si, plant growth was improved and salt stress-induced K deficiency was alleviated in WTs but not in mutants. Simultaneously, Si significantly enhanced K accumulation content, K uptake index and shoot K distribution rate in WTs but not in mutants. Besides, Si enhanced K concentration in xylem sap in WTs but not in mutants. Scanning ion-selected electrode technique (SIET) analysis showed net K influx rate was raised by Si addition under salt stress in WTs but not in mutants. Moreover, Si up-regulated the expression of genes responsible for K uptake (OsAKT1 and OsHAK1) and xylem loading (OsSKOR) in WTs but not in mutants. Overall, our results strongly indicate that Si can improve K uptake and translocation by up-regulating the expression of relevant genes, thereby promoting K status and alleviating salt stress in rice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.