Abstract

A silicon-containing polymer (HMSA), synthesized with n-BuLi, trichloroethylene, dichloromethylsilane, and dimethyldichlorosilane, with three different proportions of Si–H, and its influence on thermal oxidation have been studied. The structures of HMSA were characterized by Fourier transform infrared spectra, 1H-Nuclear Magnetic Resonance (H-NMR), 13C-NMR, 29Si-NMR, and gel permeation chromatography. Thermal and oxidative stabilities were studied by differential scanning calorimetry and thermogravimetric analysis, and the cross-linking reaction mechanisms of the HMSA were discussed. All the polymers exhibited excellent thermal and oxidation resistance; particularly, HMSA-1 showed high heat-resistant and thermo-oxidative stability; the temperatures of 5% weight loss ( Td5) were 636.3 and 645.5°C, and the residues at 1000°C were 87.07 and 86.23% in nitrogen and air, respectively. This system had excellent thermal and oxidative stability, and through the structure design, control of heat oxidation resistance was realized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call