Abstract

This paper evaluates the flowability and strength properties of alkali-activated mortar produced using silicomanganese fume (SiMnF) as the sole binder, combined with alkaline activators and sand, cured at room temperature (23 ± 1 °C). A total of 18 mixes were prepared by varying binder content (370, 470, and 570 kg/m3), alkaline activator content (33, 43, and 53% of binder by weight), and NaOH concentration (8 M and 12 M). The SiMnF-based alkali-activated pastes were characterized using SEM, XRD, and FTIR techniques to study morphology, mineral composition, and functional groups, respectively. Statistical modeling, including analysis of variance (ANOVA) and response surface method (RSM), was performed to optimize the mixes, and a life cycle assessment was conducted to evaluate the environmental impact of the developed SiMnF-based alkali-activated mortars (SiMnF-AAM). The experimental results showed that an optimal mix design with 470kg/m3 SiMnF, 43% alkaline activator content, and NaOH concentrations of 8M and 12M achieved the best balance of flow and strength. XRD and FTIR analyses confirmed that Nchwaningite was the primary reaction product, with secondary phases including magnetite, manganese ferrite, and potassium feldspar, influenced by alkali concentration. The SiMnF-based mixtures had a significantly lower CO₂ footprint (0.08kg CO₂/kg) compared to the cement-based mix, with alkali activators being the primary contributors to emissions. The developed SiMnF-AAM mixes, cured at room temperature, exhibited improved workability, mechanical properties, and reduced environmental impact, making them adaptive to real-life applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.