Abstract

Background and objectiveIn silico clinical trials are the future of medicine and virtual testing and simulation are the future of medical engineering. The use of a computational platform can reduce costs and time required for developing new models of medical devices and drugs. The computational platform, which is one of the main results of the SILICOFCM project, was developed using state-of-the-art finite element modeling for macro simulation of fluid-structure interaction with micro modeling at the molecular level for drug interaction with the cardiac cells. SILICOFCM platform is using for risk prediction and optimal drug therapy of familial cardiomyopathy in a specific patient. MethodsIn order to obtain 3D image reconstruction, the U-net architecture was used to determine geometric parameters for the left ventricle which were extracted from the echocardiographic apical and M-mode views. A micro-mechanics cellular model which includes three kinetic processes of sarcomeric proteins interactions was developed. It allows simulation of the drugs which are divided into three major groups defined by the principal action of each drug. Fluid-solid coupling for the left ventricle was presented. A nonlinear material model of the heart wall that was developed by using constitutive curves which include the stress-strain relationship was used. ResultsThe results obtained with the parametric model of the left ventricle where pressure-volume (PV) diagrams depend on the change of Ca2+ were presented. It directly affects the ejection fraction. The presented approach with the variation of the left ventricle (LV) geometry and simulations which include the influence of different parameters on the PV diagrams are directly interlinked with drug effects on the heart function. It includes different drugs such as Entresto and Digoxin that directly affect the cardiac PV diagrams and ejection fraction. ConclusionsComputational platforms such as the SILICOFCM platform are novel tools for risk prediction of cardiac disease in a specific patient that will certainly open a new avenue for in silico clinical trials in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call