Abstract

BackgroundGrass phytoliths are the most common phytoliths in sediments; recognizing grass phytolith types is important when using phytoliths as a tool to reconstruct paleoenvironments. Grass bulliform cells may be silicified to large size parallelepipedal or cuneiform shaped phytoliths, which were often regarded as of no taxonomic value. However, studies in eastern Asia had identified several forms of grass bulliform phytoliths, including rice bulliform phytolith, a phytolith type frequently used to track the history of rice domestication. Identification with a higher level of taxonomic resolution is possible, yet a systematic investigation on morphology of Poaceae bulliform phytoliths is lacking. We aimed at providing a morphological description of bulliform phytoliths of Poaceae from Taiwan based on morphometric measurements in anatomical aspect. The results are important references for paleo-ecological studies.ResultThe morphology of grass bulliform phytoliths is usually consistent within a subfamily; the end profile is relatively rectangular in Panicoideae and Micrairoideae, whereas cuneiform to nearly circular in Oryzoideae, Bambusoideae, Arundinoideae, and Chloridoideae. Bulliform phytoliths were seldom observed in Pooideae. Certain morphotypes are limited to plants growing in specific environments. For example, large, thin, and pointed bulliform phytoliths are associated with wet habitat; Chloridoideae types are mostly from C4 plants occupying open arid places.ConclusionGrass bulliform phytoliths can be identified at least to the subfamily level, and several forms were distinguished within large subfamilies. Previously un-reported silicified cell types, i.e., arm cells and fusoids, and two special trichome phytolith types associated with bulliform phytoliths, were described. Morphometric methods were great tools for delimiting morphotypes; with refined morphological classification the association between forms and habit/habitats was revealed. The knowledge provides new ways to interpret phytolith assemblage data, and it is especially useful when the sediments are enriched in large blocky phytoliths.

Highlights

  • Grass phytoliths are the most common phytoliths in sediments; recognizing grass phytolith types is important when using phytoliths as a tool to reconstruct paleoenvironments

  • Many works on grass short cell phytoliths have demonstrated how a careful assessment of the association between phytolith assemblages, taxonomy, and habitats is necessary before using phytoliths to reconstruct paleoenvironments (Lu and Liu 2003; Strömberg 2005; Barboni and Bremond 2009; Neumann et al 2015)

  • Short cell phytoliths were present in all accessions, whereas the silicification of other epidermal cell types varied

Read more

Summary

Introduction

Grass phytoliths are the most common phytoliths in sediments; recognizing grass phytolith types is important when using phytoliths as a tool to reconstruct paleoenvironments. The silicified short cells of peculiar shapes, such as bilobates (dumbbells), saddles, and rondels, are present exclusively in the grass family. They are good representatives of Poaceae, usually there are more than one form of short cell phytoliths existing in one plant (multiplicity), and the same form can be found in more than one taxon (redundancy). In addition to short cells, phytoliths of the grass family include those originated from long cells, trichomes, and bulliform cells. These phytoliths are larger than short cells, and are in general considered of limited value in discriminating taxa within the family

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.