Abstract

Precipitated silica is synthesized commercially by neutralizing sodium silicate solution under harsh conditions of pH and temperature. In contrast, the formation of ornate silica structures in biological systems (biosilicification) occurs at (or close to) pH 7 under ambient conditions and is thought to be mediated by proteins. Determination of the primary sequences of these proteins has led to the identification of various amino acids that have been proposed to be important in biosilicification. The corresponding synthetic polyamino acids are now being successfully used in bioinspired materials chemistry for developing new materials and processes. Here we report the formation of well-defined silica in vitro as facilitated by poly-L-arginine (PLAr) under ambient conditions and at neutral pH. Two different silica precursors were used in this investigation; tetramethoxysilane (TMOS) and water glass. Scanning Electron Microscopy (SEM) was used for studying the silica morphology and it was revealed that the silica spheres had typical diameters in the range 300–500nm. The PLAr is a cationically charged macromolecule at neutral pH and is believed to act as a catalyst/template/scaffold for the formation of silica in vitro in analogous fashion to certain biomacromolecules that are able to facilitate silicification/biosilicification. These results are discussed here in the context of the role(s) of (bio)macromolecules that facilitate (bio)mineralization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.