Abstract

Atomic-resolution high-angle annular dark-field scanning-transmission electron microscopy and ab-initio calculations were used to reveal the reaction involved in the formation of ultra-thin Ni silicide film at 300°C. We found that a Ni-adamantane structure, in which Ni atoms occupy the tetrahedral interstitial voids of Si, forms at the initial stage of the reaction. We also found that the adamantane structure is under considerable compressive stress due to lattice-mismatch at the adamantane structure-Si interface (5.6%). Then, NiSi2 forms just beneath the Ni-adamantane structure at a much lower temperature than the NiSi2 formation temperature reported for the reaction between a Ni layer and Si substrate (800°C). Our analyses strongly suggest that the Ni-adamantane structure acts as a precursor in the formation of NiSi2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call