Abstract
The aim of this research was to develop a new eco-product to find a correct recovery of silicate sawing sludge by means of waste management according to European criteria. To reach this goal, a thermal eco-mortar for a macroporous plaster was developed. The main characteristics of a plaster that influence the correct choice of the mortar are good adherence with underlying support, impermeability, thermal and acoustic insulation, mechanical resistance and ability to allow transpiration processes through the wall’s perimeters. Plaster is a mortar composed of a binding part that incorporates sand with a selected particle size distribution, not greater than 2 mm. The sludge, to be used as plaster, must satisfy requirements related to thermal insulation, resistance to moisture, mechanical resistance and good injection. For this purpose, low-content metals sludge, derived from the Luserna stone flaming and cutting slabs, are to be reused as a substitute for the sands and fine particles, respectively, that are normally used to produce plasters. The laboratory tests carried out on the finished product, in accordance with European standards, are as follows: water absorption, specific density, flexural and compressive strength, before and after freeze and thaw cycles, pull out, salt crystallisation cycle resistance and thermal conductivity. Chemical and leaching tests were carried out to verify the possible release of heavy metals into the environment after installation. The product quality was demonstrated as the cement mortars, incorporating the metals, did not allow their release in nature. A sludge recovery, in an unaltered state, was provided to reduce any costs connected to a pre-treatment and to make recovery economically advantageous for the stone sector.
Highlights
Stone quarries and stone processing plants are designed to extract and produce a marketable product with the maximum output and profit, but stone waste production and environmental management are a consequence of this process
The studied recoveries were foreseen on sludge without any treatment for economic advantages and to avoid landfill disposal
Thermal-eco-mortar for plaster application, sawing sludge with low metal content from Luserna stone cutting with a diamond blade, improved the rheological, thermal and physical performance, conferring a light macroporous cellular structure by means of adding an organic foam
Summary
Stone quarries and stone processing plants are designed to extract and produce a marketable product with the maximum output and profit, but stone waste production and environmental management are a consequence of this process. One of the main options for managing rock processing waste, according to European Strategies on Best Available Technique (BAT) [1], is for land use, e.g., as aggregates or for restoration. The three factors: cost, environmental performance and risk of failure must be considered for the choice of the waste management method. 2008/98/EC [2] defines the concept of “end-of-waste” and the priority order actions hierarchy for waste management. Prevention on products is a measure aimed at reducing the amount of waste and reducing the content of hazardous materials; re-use, recycling and recovery of waste are all actions aimed at resource efficiency, for reducing the environmental impact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.