Abstract

Cement-based materials are ubiquitous in almost all built environment. In spite of this, little is known about the formation and the role played by the silicate chains always present in the cement nanostructure. By means of first principles simulations we provide compelling evidence on the pivotal role played by certain ionic species in the formation of the silicate chains inside the cementitious matrix. Moreover, we corroborate the experimental evidence which shows that the length of the most stable chains with m Si atoms follows a magic-number sequence: m = 3n-1 with n = 1,2,... Our results have been applied in the development of new higher performance cement-based materials by adding nanosilica.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.