Abstract

We report here the synthesis of a new sorbent comprising silica-coated magnetic nanoparticles (SCMNPs) modified with γ-mercaptopropyltrimethoxysilane (γ-MPTMS) for solid phase extraction of trace amounts of Cd, Cu, Hg, and Pb from biological and environmental samples. The prepared nanoparticles were characterized by infrared spectroscopy, transmission electron microscopy, and static adsorption-desorption experiments. These magnetic nanoparticles carrying the target metals could be easily separated from the aqueous solution simply by applying an external magnetic field; no filtration or centrifugation was necessary. Using this novel magnetic material, we have developed an efficient and cost-effective two-step method for detecting trace amounts of Cd, Cu, Hg, and Pb in environmental and biological samples. The first step of the method is a separation/preconcentration step, in which metals are adsorbed onto γ-MPTMS-SCMNPs. In the second step, inductively coupled plasma mass spectrometry is used to study the adsorbed metals. The effects of pH, sample volume, eluent, and interfering ions have been investigated. Under the optimized conditions, the limits of detection for Cd, Cu, Hg, and Pb were as low as 24, 92, 107, and 56 pg L − 1 , respectively. Relative standard deviations (RSDs, C = 2 ng L − 1 , n = 7) were 6.7%, 9.6%, 8.3%, and 3.7%, respectively.The proposed method has been validated using three certified reference materials, and it has been applied successfully in the determination of trace metals in biological and environmental samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call