Abstract

Submarine diffused seepage (from 5 to 15 m depth) and intertidal focused gasohydrothermal venting take place on the West shore of the Bahía Concepción Bay, on Baja California, Mexico. The intertidal venting consists of a cluster of hot springs that occur a few meters offshore, with vent temperatures up to 62 °C and a pH of 6.68. Two irregularly shaped patches of silica-carbonate hot spring deposits occur around the main intertidal vent areas. In addition, a fossil bed of silica-carbonate hot spring deposits of about 75 m long crops out along a cliff next to the active vent area. Both fossil and modern silica-carbonate deposits are finely laminated, and form columnar, bulbous and smooth undulating microstromatolites up to 10 cm thick. Noncrystalline opal-A is the only silica phase present in the modern and fossil hot spring deposits and occurs as microspheres up to 300 nm in diameter forming porous aggregates and irregular clusters, chains and spongy filament networks. The silica supersaturation state of the thermal fluid necessary for opal precipitation is achieved by cooling when it reaches the surface. The presence of preserved microbial remains (diatoms and possibly filamentous microbes) in both modern and fossil deposits reflects the biological activity around the hot springs. The biological activity constrains the fabrics and the textures of the deposit, and could mediate silica deposition. Calcite is the most abundant crystalline phase in the hot spring deposits and forms discontinuous horizons of subhedral bladed crystals within the silica aggregates. Calcite crystals are unusually enriched in 13C, with δ 13C V-PDB values between +3.0‰ and +9.3‰. The large 13C enrichment is attributable to a geothermal CO 2 degassing process, which yields calcite supersaturation. The δ 18O V-PDB values in calcite, between −10.0‰ and −6.6‰, indicate precipitation from a hot spring fluid that is a mixture of seawater and meteorically derived water. With the methods applied in this study, no indication of biogenic influence on calcite precipitation has been found. Minor amounts of barite occur in the fossil and modern hot spring deposits and precipitates when Ba 2+-rich thermal water mixes with seawater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call