Abstract

Enzymes play an indispensable role in biosystems, catalyzing a variety of chemical and biochemical reactions with exceptionally high efficiency and selectivity. These features render them uniquely positioned in developing novel catalytic systems and therapeutics. However, their practical application is largely hindered by the vulnerability, low reusability and the inability to overcome the biological barriers of enzymes. Silica-based nanoparticles (SNPs) are a classic family of nanomaterials with tunable physicochemical properties, making them ideal candidates to address the intrinsic shortcomings of natural enzymes. SNPs not only improve the activity and durability of enzymes, but also provide precise spatiotemporal control over their intracellular as well as systemic biodistributions for boosting the catalytic outcome. Herein, the recent progress in SNPs for enzyme immobilization and delivery is summarized. The therapeutic applications, including cancer therapy and bacterial inhibition, are particularly highlighted. Our perspectives in this field, including current challenges and possible future research directions are also provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.