Abstract

Development of multi-purpose probes for mass transport measurements is of importance to gain knowledge in diffusional behaviour in heterogeneous structures such as food, hygiene or pharamceuticals. By combining different techniques, such as Fluorescence Recovery After Photobleaching (FRAP) and Nuclear Magnetic Resonance Diffusometry (NMR-d), information of both local and global diffusion can be collected and used to gain insights on for example material heterogeneities and probe-material interactions. To obtain a FRAP-responsive probe, fluorescent silica particles were produced using fluorescent preconjugates added in a modified Stöber process. A NMR-d responsive moiety was introduced by derivatizing the fluorescent silica particles with polyethylene glycol. The particle size distributions were determined by dynamic light scattering and transmission electron microscopy and these measurements were compared to value extrapolated from diffusion measurements using FRAP and NMR-d. The good agreement between the FRAP and NMR-d measurements demonstrates the potential of multi-purpose probes for future applications concerning mass transport at local and global scale simultaneously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.