Abstract
An innovative composite was obtained by a straightforward sol-gel procedure, involving boron-doped diamond powder (BDDP) incorporation into a SiO2 veil (SiO2V) matrix. Composite-coated glassy carbon plates were used as substrate for Pt electrochemical deposition, and the electrodes thus obtained (Pt/BDDP–SiO2V) were compared on a relative basis with those prepared in the absence of the silica matrix (Pt/BDDP). SEM measurements have shown that a BDDP substrate promotes Pt cluster formation, whereas on BDDP–SiO2V, particles are much smaller (ca. 45 nm to ca. 140 nm). The activity for CH3OH oxidation was checked by cyclic voltammetry, and it was found that at Pt/BDDP–SiO2V, the main anodic peak is shifted with ca. 0.35 V toward lower potentials, indicating a considerable improvement in the overall process kinetics. Stripping experiments together with long-term polarization measurements demonstrated that when deposited on the BDDP–SiO2V support, Pt particles are less susceptible to CO poisoning and this behavior was tentatively ascribed to the presence of a higher relative surface concentration of more stable, oxidized platinum species, as evidenced by XPS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.