Abstract

Bioencapsulation has been a promising technique for various biotechnological and medical applications. Nevertheless, when encapsulated, the activity of the encapsulated biologicals is usually reduced due to diffusional resistance and use of organic solvents in the process. Here, we developed a sol–gel electrospinning technique to encapsulate a bacterium, Escherichia coli expressing a biocatalyst, AtzA, into hybrid silica/polyvinyl alcohol nanofibers. We used a microfluidic timer to maintain a constant sol viscosity, thus enabling continuous formation of silica gel nanofibers weaving a bioreactive mat. Encapsulation of bacteria into thin-walled (a few tens of nanometers) fibers significantly reduced diffusional resistance. Furthermore, with this process, the need for organic solvents was eliminated. This enabled us to reach encapsulated bacteria activity at the levels seen in free cells. This novel process enables new large-scale applications in biotechnology, especially in bioremediation, biosensors, and manufacturing of recombinant proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.