Abstract
Abstract The effectiveness of predicting rubber performance based on measured silica physical properties in silica- and carbon black-filled compounds is presented for three rubber formulations: an off-the-road tire tread, a wire coat stock and a V-belt. Correlation and regression analyses were performed using SAS software for sixteen physical properties of thirteen precipitated silicas, and sixteen rubber compound performance characteristics of the three compounds. Silica physical properties studied include various measurements of surface area and structure, particle size, pH and impurities. Rubber performance characteristics studied include cure properties and physical properties such as stress/strain, tear strength, cut growth resistance, abrasion resistance and heat build-up. The present study confirms that silica surface area is the single best predictor of the effect that varying silica physical properties have on the physical performance of cured, carbon black-filled rubber compounds containing precipitated silica. Silica structure, as measured by DBP absorption and nitrogen or mercury pore volume, is a secondary predictor of certain rubber physical properties. The confidence limits of the predictions is dependent upon the concentration of precipitated silica used in the carbon black-filled rubber compound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.