Abstract

Nanoparticles are utilized in a multitude of applications due to their unique properties. Consequently, characterization of nanoparticles is crucial, and various methods have been employed in these pursuits. One such method is Atom Probe Tomography (APT). However, existing sample preparation techniques for APT generally involve embedding of the nanoparticles in a matrix different from their environment in solutions or at solid-liquid interfaces. In this work, we demonstrate a methodology based on silica embedding and explore how it can be utilized to form a matrix for nanoparticles suitable for APT analysis. Through chemisorption to a surface, gold nanoparticles were densely packed, ensuring a high probability of encountering at least one particle in the APT analyses. The nanoparticle-covered surface was embedded in a silica film, replacing the water and thus making this method suitable for studying nanoparticles in their hydrated state. The nanoparticle's silver content and its distribution, originating from the nanoparticle synthesis, could be identified in the APT analysis. Sodium clusters, possibly originating from the sodium citrate used to stabilize the particles in solution, were observed on the nanoparticle surfaces. This indicates the potential for silica embedding to be used for studying ligands on nanoparticles in their hydrated state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.