Abstract

In this paper we report on the fabrication of regular arrays of silica nanoneedles by deposition of a thin layer of silica on patterned arrays of polymer nanowires (or polymer nanohair). An array of high-aspect-ratio nanoscale diameter holes of depths greater than 10 µm was produced at the surface of a fused silica wafer by an amplified femtosecond laser system operated in single-pulse mode. Cellulose acetate (CA) film was imprinted into the nanoholes and peeled off to form a patterned array of standing CA nanowires, a negative replica of the laser machined nanoholes. The cellulose acetate replica was then coated with silica in a chemical vapor deposition process using silicon tetrachloride vapor at 65 °C. Field emission scanning electron microscopy, focused ion beam sectioning, energy dispersive x-ray analysis and Fourier-transform infrared spectroscopy were used to characterize the silica nanoneedles. Precisely patterned, functionalized arrays of standing silica nanoneedles are useful for a number of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.