Abstract

Nanoparticles of refractory compounds represent a class of stable materials showing a great promise to support localized surface plasmon resonances (LSPRs) in both visible and near infrared (NIR) spectral regions. It is still challenging to rationally tune the LSPR band because of the difficulty to control the density of charge carriers in individual refractory nanoparticles and maintain the dispersity of nanoparticles in the processes of synthesis and applications. In this work, controlled chemical transformation of titanium dioxide (TiO2) nanoparticles encapsulated with mesoporous silica (SiO2) shells to titanium nitride (TiN) via nitridation reaction at elevated temperatures is developed to tune the density of free electrons in the resulting titanium-oxide-nitride (TiOxNy) nanoparticles. Such tunability enables a flexibility to support LSPR-based optical absorption in the synthesized TiOxNy@SiO2 core-shell nanoparticles across both the visible and NIR regions. The silica shells play a crucial role in preventing the sintering of TiOxNy nanoparticles in the nitridation reaction and maintaining the stability of TiOxNy nanoparticles in applications. The LSPR-based broadband absorption of light in the TiOxNy@SiO2 nanoparticles exhibits strong photothermal effect with photo-to-thermal conversion efficiency as high as ~ 76%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.