Abstract

We have studied the direct synthesis of hydrogen peroxide using a catalytic system consisting of palladium supported on silica bifunctionalized with sulfonic acid groups and bromide in the absence of acid and halide promoters in solution. Catalysts with several bromide substituents were employed in the catalyst synthesis. The prepared samples were characterized by TXRF, XPS, and hydrogen peroxide decomposition. Catalysts characterization indicated the presence of only palladium (II) species in all of the samples, with similar values for surface and bulk of Pd/Br atomic ratio. The catalysts were tested via direct synthesis, and all samples were able to produce hydrogen peroxide at 313 K and 5.0 MPa. The hydrogen peroxide yield and selectivity changed with the Pd/Br ratio. A decrease in the Pd/Br ratio increases the final hydrogen peroxide concentration, and the selectivity for H2O2 reaches a maximum at a Pd/Br ratio around 0.16 and then decreases. However, the maximum hydrogen peroxide concentration and selectivity occur at slightly different Pd/Br ratios, i.e., resp. 0.4 vs. 0.16.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.